首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
综合类   2篇
  2010年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The feasibility of using anaerobic baffled reactor(ABR)as onsite wastewater treatment system was discussed.The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors(PFF of 1 to 6),superficial gas velocities(between 0.6 and 3.1 cm/hr)and hydraulic retention times(HRT)(24,36 and 48 hr).Residence time distribution(RTD)analyses were carried out to investigate the hydraulic characteristics of the ABR.It was found that the PFF resulted in hydraulic dead space.The dead space did not exceed 13% at PFF of 1,2 and 4 while there was 2-fold increase(26%)at PFF of 6.Superficial gas velocities did not result in more(biological)dead space.The mixing pattern of ABR tended to be a completelymixed reactor when PFF increased.Superficial gas velocities did not affect mixing pattern.The effects of PFF on mixing pattern could be minimized by higher HRT(48 hr).The tank-in-series(TIS)model(N=4)was suitable to describe the hydraulic behaviour of the studied system.The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns,introducing satisfactory hydraulic efficiency.Chemical oxygen demand(COD)and total suspended solids(TSS)removals under all flow patterns were achieved more than 85% and 90%,respectively.The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.  相似文献   
2.
The feasibility of using anaerobic ba ed reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under di erent peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carried out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completelymixed reactor when PFF increased. Superficial gas velocities did not a ect mixing pattern. The e ects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under di erent flow patterns, introducing satisfactory hydraulic e ciency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of e uent COD and TSS concentration did not exceed 15 mg/L.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号